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Abstract

We introduce LLM CHESS, an evaluation framework designed to probe the gener-
alization of reasoning and instruction-following abilities in large language models
(LLMs) through extended agentic interaction in the domain of chess. We rank
over 50 open and closed source models by playing against a random opponent
using a range of behavioral metrics, including win and loss rates, move quality,
move legality, hallucinated actions, and game duration. For a subset of models, we
derive an Elo estimate by playing against a chess engine with variably configured
skill. Despite the simplicity of the instruction-following task and the weakness
of the opponent, many state-of-the-art models struggle to complete games or
achieve consistent wins. Similar to other benchmarks on complex reasoning tasks,
our experiments reveal a clear separation between reasoning and non-reasoning
models. However, unlike existing static benchmarks, the stochastic and dynamic
nature of LLM CHESS uniquely reduces overfitting and memorization while pre-
venting benchmark saturation. To support future work on evaluating reasoning
and instruction-following in LLMs, we release our experimental framework, a
public leaderboard, and a dataset of associated games. Our code is available at
https://github.com/LLM-CHESS/llm_chess.

1 Introduction

Chess has long been viewed as an application for artificial intelligence (AI) since its inception,
often being one of the first domains in which new technologies are used [Prost, 2012]. The idea
of computer chess was pursued by the founders of AI, who viewed it as an exciting application in
which advances could spur developments in other fields [Turing, 1988, Wiener, 2019, Shannon, 1950].
In fact, chess is often referred to as the ‘drosophilia of AI’, in that it both is a worthy testbed for
experiments and also has guided the field’s development [Simon and Schaeffer, 1992, McCarthy,
1990, Ensmenger, 2012]. As such, chess also has often been used to study cognitive abilities and
decision making in humans [Groot, 1978, Simon and Chase, 1988, Sala et al., 2017, Sala and Gobet,
2017, Burgoyne et al., 2016, Blanch, 2022, Rosholm et al., 2017, Jankovic and Novak, 2019].

Since the 1950s, chess engines have been created with the hopes of beating humans, achieving various
levels of success along the way. As time progressed, these engines advanced both through hardware
and algorithmically, until reaching their current most powerful form with neural networks [Bernstein
and de V. Roberts, 1958, Adel’son-Vel’skii et al., 1970, Newborn, 1979, Condon and Thompson,
1983, Campbell et al., 2002, Newborn, 2012, Silver et al., 2017]. While certain architectures and
algorithms applied to chess have seen success elsewhere, these chess engines are explicitly tailored to
chess games, unable to generalize.
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Recently, large language models (LLMs) have shown incredibly competent performance in many
diverse fields [Brown et al., 2020, Touvron et al., 2023, Thirunavukarasu et al., 2023, Liu et al., 2023,
Wu et al., 2023b, Wei et al., 2022, OpenAI et al., 2024, DeepSeek-AI et al., 2025], leading many to
wonder whether they may play an important role in achieving artificial general intelligence [Bubeck
et al., 2023, Feng et al., 2024, Mumuni and Mumuni, 2025]. Additionally, tools like reinforcement
learning and test-time scaling approaches have been shown to greatly increase reasoning abilities,
accelerating the promise of a general reasoner [Chen et al., 2024, Shao et al., 2024, DeepSeek-AI
et al., 2025]. While chess engines can now regularly beat humans, the game has not yet sufficiently
been tested on LLMs, which ideally would possess such general characteristics that they could excel
at any complex reasoning task, whether it be math, coding, or gameplaying like chess. As we start to
design models with more general capabilities, what is old becomes new again: the large combinatorial
spaces, long-horizon planning, and dynamic nature of chess all present thorough challenges for LLMs.
Continuing the tradition of using chess to test and gain insights into current model capabilities, we
present three main contributions:

1. We introduce LLM CHESS, a benchmark assessing both reasoning and instruction-following
in the context of chess. Central to our benchmark is agentic interaction: by having LLMs
play chess through autonomously selecting actions within a conversation, the difficulty
comes not only in reasoning about the board and choosing the best move, but also how to
formulate these choices. Unlike other reasoning benchmarks that can be contaminated or
easily saturated, LLM CHESS is extensible by scaling the difficulty of the opponents and is
not reliant on static board positions that can be included in training data.

2. We formulate a wide suite of per-model, per-game, and per-ply metrics to comprehensively
evaluate the quality of each LLM’s play, leveraging the depth of the chess domain to improve
our analysis.

3. We evaluate over 50 models on LLM CHESS, showing that the domain of chess continues
to present a challenging and informative reasoning task when applied to LLMs. We find that
currently only the most powerful reasoning-enhanced LLMs can consistently beat a random
player, even when we let them query for legal moves. When playing against engines, these
models still fare poorly, with o3 (low) only achieving a 758 Elo in LLM CHESS. Through
extensive ablations on specific parts of the game, we find that LLM performance varies
widely based on the format of the conversations and prompt, suggesting a lack of robustness
in their reasoning abilities.

Altogether, our comprehensive experiments show that chess is a worthy testbed for benchmarking
the reasoning and instruction-following ability of LLMs and that current state-of-the-art models lack
the ability to generalize their strong reasoning performance to be as impressive in chess as in other
domains.

2 LLM CHESS

Here we introduce LLM CHESS (Figure 1), explaining our design choices and the metrics we use to
score the models.

2.1 Design

In chess, an action taken by one side is referred to as a half-move or ply while two concurrent plys
are referred to as a move, one by white, the other by black. 1 At each ply, we initiate a conversation
with the end goal of outputting a valid chess move. We format all moves in Universal Chess Interface
(UCI) format, a commonly used notation for chess engines [Huber and Meyer-Kahlen, 2000]. Each
conversation consists of several turns, where each turn a LLM is prompted with instructions to output
a valid action. We offer three actions to the LLM: 1) get_current_board, which fetches and
presents the state of the current board using a unicode board, 2) get_legal_moves, which fetches a
list of legal moves in UCI format, and 3) make_move, which takes a UCI-formatted string as input,
adjusts the board state with that move, then ends the LLM’s turn. Ablations on these choices are

1When it is clear that we are only discussing one side’s actions, we occasionally overload move to refer to a
ply, i.e., making a move in a ply refers to a single piece movement for that specific ply.
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Figure 1: Overview of the LLM CHESS benchmark. White and Black player agents (random or
engine for White, LLM for Black) interact with a central proxy that issues agent queries, validates
outputs, and invokes one of three actions (get_current_board, get_legal_moves, make_move)
The Chess Environment enforces the rules, updates and logs the FEN state, and records per-move
metrics for downstream analysis.

presented in Section 3.4. We implement our LLM in an agentic setting using the AG2 framework [Wu
et al., 2023a, Wang et al., 2025].

We cap each game at 100 moves (200 plys), have a max of 10 conversation turns per ply, and allow a
max of 3 attempts per conversation turn for the LLM to provide a legal action or move. The LLMs
view each ply as independent of all others, as we do not provide any game history. While this differs
from humans who know their previous moves when playing chess, this aligns more with the machine
setting where a model should be able to make the best move given the board state alone. Importantly,
this setting does not eliminate the need for long-term planning: models must continue to be aware
of how the moves they choose will impact future board states. Instructions provided to the LLM
to initiate the conversation and resulting from various actions are presented in Appendix C. From
preliminary testing, we somewhat surprisingly found many LLMs performed poorly against random
players. So, we evaluate a wide set of models against random players to get a general sense of their
abilities. Then, on particularly good models, we play them against a chess engine with variably
configured skill.

Random Player We benchmark over 50 models by playing 30 games as black against a random
player, who chooses a move at random from all legal moves. We choose a random player first because
we want to focus on game-playing ability while removing skill as a main focus, i.e., to see if the model
can play and finish a game of chess without having game-ending issues from instruction-following
issues or choosing invalid moves.

Chess Engine From the initial models, we choose a subset of models to play against Komodo’s
Dragon 1 engine, which can be set at various skill levels from 1-25. As an estimate, Skill 1 is around
Elo 250, then each subsequent skill level is a 125 boost in Elo based on chess.com games [Kaufman
and Lefler, 2020]. Since chess.com is one of the most popular online chess platforms, having over
200 million members [Chess.com, 2025], this lets us ground our LLM performance in the real world.
We run experiments against Dragon 1 at 30 games per skill level starting at Skill 1 and up to Skill
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5, representing Elos of {250, 375, 500, 625, 750} on chess.com. While currently we do not evaluate
with too high of Skills, our framework permits easy extensibility: as LLMs become better and better,
we can increase the difficulty of the opponents to prevent saturation.

2.2 Metrics

LLM CHESS evaluates LLMs by playing full chess games. However, we also evaluate the reasoning
ability of the LLM with various per-ply metrics rating the quality of each move, as well as the
instruction-following ability by examining how the model engages with our agentic structure.

Per-model The main way we quantify performance is to calculate a LLM’s Win/Loss percentage
against an opponent, which is the difference between wins and losses as a percentage of total games:

Win/Loss =
1

2

(
llm_wins− opponent_wins

total_games

)
+ 0.5

Win/Loss admits easy interpretability: 50% means a model has equal wins and losses. To win a game,
LLM must checkmate its opponent. LLMs can lose or draw in the following ways: 1) Chess-based.
The LLM could lose through checkmate by the opponent or draw due to various rules (stalemate,
insufficient material, seventy-five moves without a capture or pawn move, fivefold repetition, or the
game reached 100 moves). 2) Instruction-based. The LLM loses if it reaches the maximum number
of conversation turns without making a move (10) or if it reached the maximum number of attempts
(3) at a conversation turn without selecting a valid action. We call failures here instruction-following
errors. 3) Model errors. These are errors due to the model or how it’s served like timeout for reasoning
models. We exclude all games with these errors when playing against a random player so we could
better analyze behavior, but include them when playing against Dragon 1 to simulate what would
happen in a real-world scenario.

While Win/Loss is helpful for observing the quality of LLM performance against weaker opponents,
it is less grounded in the world of chess. So, for LLMs that perform sufficiently well against random
players and against the engine at various skill levels, we calculate Elo [Elo, 1978]. Normally Elo
ratings update dynamically between players, but here we treat each engine opponent’s rating Ri as
fixed and encode the LLM’s game outcomes as Si ∈ {1, 0.5, 0}. Under Elo theory, the expected
score against Ri is

Ei(R) =
1

1 + 10(Ri−R)/400
.

Rather than updating R incrementally, we find the maximum-likelihood rating R̂ by solving∑
i

(
Si − Ei(R̂)

)
= 0. Around R̂, the observed Fisher information I(R̂) =

∑
i Ei(R̂)

(
1 −

Ei(R̂)
)
(ln 10/400)2 yields a standard error SE = 1/

√
I and thus a 95% confidence interval

R̂± 1.96 SE [Glickman, 1999]. We detail the exact skill levels we evaluate against for each model in
the experiments section.

Per-game For each game, we calculate the number of moves per game and the reason for each
loss. We also record other metrics focused on instruction-following throughout the game that do not
depend on the quality of the moves. For get_current_board and get_legal_moves we calculate
the average number of times that action was called per ply. We also calculate the average number
of times make_move was called but resulted in an invalid move, as well as the average number of
invalid actions that were selected.

Per-ply Besides analyzing performance on a game level, we also calculate the performance per ply.
After the LLM calls make_move in each ply, we calculate the Win% (Equation (1)), the chance of
winning a game from the given position as defined by Lichess [Lichess, 2025]. This analysis is based
on centipawns, which are calculated by Stockfish representing how much worse the player’s move
was than the engine’s [Linville, 2023]. We present the Win% for the LLM averaged over each ply,
which tells us whether the LLM held a more favorable position throughout the game.

Win% = 50 + 50 ∗ (2/(1 + exp(−0.00368208 ∗ centipawns))− 1) (1)

Then, based on the difference in Win%, ∆ = Win%before move −Win%after move (where a higher ∆
means the player’s Win% decreased), we can calculate Blunders, Mistakes, and Inaccuracies, common
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classifications of moves used by online chess platforms, following the Lichess cutoffs [Lichess, 2023]:

Judgment =


Blunder if ∆ ≥ 30

Mistake if ∆ ≥ 20

Inaccuracy if ∆ ≥ 10

(2)

We present the average Blunder, Mistake, and Inaccuracy rate per ply, as well as Best, the rate in which
the LLM selected the best move as identified by Stockfish. We note that since our Win% scores are
based on centipawns, these metrics can depend on the hyperparameters of Stockfish. Full implementa-
tion details (including the score_to_cp function and BLUNDER_THRESHOLD, MISTAKE_THRESHOLD,
INACCURACY_THRESHOLD) are available in Appendix A.

Figure 2: Win/Loss of LLM players versus random opponents. The dashed line marks a Win/Loss of
50%, which represents an equal amount of wins and losses.

3 Experiments

By default, all LLMs are run with a temperature of 0.3 and a Top P of 1.0. More details about the
models we evaluate on and how they are run is detailed in Appendix A.

3.1 LLMs vs. Random

We present the Win/Loss of 44 LLMs versus a random player for 30 games in Figure 2. Most notably,
we find that most models are not able to consistently beat a random player; in fact, only models with
reasoning abilities are able to perform better than 50%. To analyze the reasons behind this poor
performance, we present per-game metrics including how the LLMs won and lost in Table 1. Note
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that the only way black can win is through a checkmate. For each of these metrics, we present the
average over all reasoning and non-reasoning models, as well as on the two top and bottom reasoning
and non-reasoning models.

Table 1: Per-game metrics for Reasoning (shaded) vs Non-Reasoning models. We choose the top and
bottom two models in each category (ranked among 15 reasoning, 29 non-reasoning models) based
on Win/Loss from among all models with a Win/Loss over zero. We include the percent of losses
due to errors in instruction-following (Instruction) or checkmates by white (MateW), as well as the
amount of draws (Draw), checkmates by black (MateB), and average moves over all games.

Model Instruction (%) Draw (%) MateW (%) MateB (%) Avg Moves

Reasoning Avg 24.4 30.2 0.0 45.4 93.7
Non-Reasoning Avg 71.9 24.6 2.8 0.7 73.9

o3 (medium)(1) 0.0 0.0 0.0 100.0 40.1
o3 (low)(2) 0.0 10.0 0.0 90.0 63.5
Qwen2.5-Max(1) 0.0 96.7 3.3 0.0 197.4
GPT-4o (2024-11-20)(2) 0.0 90.0 6.7 3.3 194.9

o3-mini (low)(14) 36.7 53.3 0.0 10.0 139.3
Deepseek-R1(15) 60.0 16.7 0.0 23.3 88.2
Gemini 2.0 Flash Lite(28) 90.0 0.0 6.7 3.3 90.3
Qwen2.5-72B-Instruct(29) 90.0 6.7 3.3 0.0 64.1

Our results indicate that reasoning-enchanced LLMs dramatically outperform non-reasoning models
in our random-opponent setting. Reasoning models have an average win rate of 45.4% with the top
performers achieving close to 100%, whereas non-reasoning models have an average win rate of 0.7%
with the top performer achieving 3.3%. This performance gap is further supported by a three-fold
reduction in instruction-following errors: 72% for non-reasoning models vs 24% for reasoning
models. Lastly, non-reasoning models almost always reach the maximum moves allowed if they
don’t have instruction-following issues, whereas reasoning models converge around 94 moves per
game. While these statistics demonstrate that enhanced reasoning capabilities substantially improve
both instruction-following and overall game performance, even the best LLMs secure wins in only
about 90% of games against a random opponent, indicating poor real world performance.

Table 2: Per Ply Classification Rates (%) for Reasoning (shaded) vs Non-Reasoning Models.
Model Blunder (↓) Mistake (↓) Inaccuracy (↓) Best (↑)
GPT-4.1-mini 31.3 8.7 13.4 4.1
o4-mini (low) 11.2 3.5 5.5 10.8
o4-mini (medium) 4.2 1.1 4.0 19.5
Grok 3 Mini 9.1 2.0 5.8 8.5
Grok 3 Mini (low) 13.6 2.8 6.7 9.8
Grok 3 Mini (high) 4.9 1.5 3.4 18.2

To see how models perform throughout the game, we present per-ply metrics on a handful of models
performing at various levels in Table 2. Our results show that reasoning models make far fewer
bad moves and substantially more “best” moves than non-reasoning models. For example, o4-mini
(medium) blunders only 4.2% and mistakes 1.1% of the time per ply, compared to 31.3% blunders
and 8.7% mistakes for GPT-4.1-mini. Furthermore, o4-mini (medium) selects the "Best" move 19.5%
of the time versus just 4.1% for GPT-4.1-mini. The same trend continues with Grok 3 Mini and Grok
3 Mini (high). These results confirm that enhanced reasoning capacity reduces catastrophic errors
while boosting tactical decision making.

Notably, we also ran experiments on over 10 models that have a 0% Win/Loss, often resulting from
difficulties with instruction-following. We present these models in Table 4 in Appendix B. We also
present additional results for some models on more games in Appendix B.

3.2 LLMs vs. Chess Engine

While random players are a good test of LLMs’ abilities to complete games, they often make moves
that are nonsensical and are not realistic as a chess opponent. As such, some LLMs are able to
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perform very well against random players: the best models o3 (medium/low) and o4-mini (high) have
a Win/Loss of at least 90%. To increase the difficulty of the games and ground LLMs in real-world
performance, we now focus on our most powerful models to play against Dragon 1: o3 (low), Grok 3
Mini (high), o4-mini, o3-mini .

Figure 3: Elo of top reasoning models estimated using Dragon 1.

Figure 4 reports estimated Elo ratings (±95 % CI) for o3 (low), Grok 3 Mini (high), o4-mini, o3-mini
when playing at least 30 games against Dragon 1 at skill 1. For o3 (low) and Grok 3 Mini (high) we
play against all skills 1–5 (Elos 250–750). We include more about the models, skills they played
against, and Elo calculation in Appendix A. These Elo estimates confirm several key insights. First,
increased reasoning effort directly translates to higher real-world playing strength. For example,
boosting o4-mini from “low” to “medium” reasoning settings raises its Elo by roughly 170 points.
Second, even the strongest LLM in our study, o3 (low), peaks at an adjusted Elo of about 758, which
remains far below human master level (approximately 2000), underscoring how far LLMs lag behind
specialized chess engines and general human gameplay.

3.3 Exploring Test-time Scaling

Scaling Wide Besides increasing the number of tokens one model uses, we also run experiments
using multiple instances of the same model in parallel. To do so, we apply a Mixture-of-Agents
(MoA) approach where we have multiple proposer model calls fed into a separate aggregator model
that provides the output [Wang et al., 2024]. This occurs at every step of the conversation . We run
two settings on 30+ games with black against Dragon 1 Skill 1 using either 3x and 5x o4-mini (low)
as the proposers and always use o4-mini (medium) as the aggregator. Results are in Figure 4a. 2

Scaling Deep We show o1, o3, o4-mini, and Grok 3 Mini at various reasoning levels vs a random
player in Figure 4b. Similar to other reasoning domains, we find scaling with more tokens improves
performance on LLM CHESS, with increases of up to 15% from low to medium, and 20% from low
to high. 3

2Note that we tried to use o4-mini (low) as the aggregator but it failed, not providing a valid action but instead
commenting on the quality of the proposers’ responses.

3Empirically, we notice that as we try to run OpenAI models with higher reasoning effort, they are more
likely to result in a timeout. See Appendix D for further discussion.
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(a) Scaling wide with o4-mini and MoA. (b) Scaling deep with increased reasoning effort.

Figure 4: Performance comparisons of reasoning models. (a) Cost-performance tradeoff for Win/Loss
with o4-mini variants at each possible reasoning effort along with 3x and 5x MoA using o4-mini
(low) as the proposer and o4-mini (medium) as the aggregator. (b) Win/Loss when scaling with
variable reasoning effort.

3.4 Ablations

We design three types of ablations on o4-mini (low) and Grok 3 Mini (low) by varying the actions
we present to the model during the conversation (Actions), the state of the board from the LLM’s
perspective (Board Representation), and adding or removing information the LLM has access to
during the conversation (Changing Information). In each of the settings in each category we run 30
games per model against a random player with the LLM playing as black (unless stated otherwise).
Results are in Table 6 in Appendix B. With these results, we see performance varies widely, showing
the lack of robustness in reasoning in the chess setting.

Overall, we find that simplifying the agentic scenario by removing actions and instead supplying the
removed information automatically shows an increase in performance on both Grok 3 Mini (low) and
o4-mini (low). In both cases, offering only make_move offers substantial improvements in Win/Loss,
with o4-mini (low)’s performance increasing by over 20%. This signifies the difficulty of reasoning
models engaging in agentic interactions in LLM CHESS. Performance with both an ASCII board
and FEN is similar to our default setting for Grok 3 Mini (low), while for o4-mini (low) we see
performance improve by over 15% in both cases, reaching 95% for FEN. This suggests that some
LLMs have similar performance across board representations, while some have trouble generalizing.

Though LLM CHESS’s agentic setting can be challenging for some models, a major advantage given
to the model is their ability to query for legal moves with get_legal_moves.

When removing this ability, we see a decline in model capabilities of almost 30% for Grok 3 Mini
(low) and 10% for o4-mini (low), meaning that information is still difficult for LLMs to collect.
We also experiment with including the previous moves, mimicking the information a human would
have when playing chess. With this, we see performance is similar to the respective settings without
previous moves, showing that at least against random players, the LLM’s are not gaining much about
knowing what has already occurred in the game.

4 Related Work

Chess and AI Transformers have been applied to chess in both foundation and domain-specific
settings. While prior work has suggested that large language models (LLMs) display surprising
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competence in chess [Dynomight, 2024, Acher, 2023], these findings often rely on a small set of
models, static PGN completions, or idealized prompting conditions. Studies such as the Chess
Transformer [Noever et al., 2020], Chessformer [Monroe and Chalmers, 2024], and BERT-based
rule learners [DeLeo and Guven, 2022] demonstrate improved move legality and opening play, but
confine game play to offline or single-turn evaluations. Our findings show that when evaluated
in interactive or compositional settings, language models fail to adhere to basic rules, lose track
of the game state, or hallucinate with illegal moves. More recent work has involved fine-tuning
transformer architectures directly on a large-scale chess corpus, such as ChessGPT [Feng et al., 2023]
and Amortized Planning Transformers [Ruoss et al., 2024], with the latter treating chess as a planning
problem. While these approaches show promise, they are typically assessed on win rate or move
legality, focusing little on generalization, instruction-following, or reasoning. For LLMs, several
open-source efforts have attempted to benchmark on chess tasks, such as generating legal moves or
competing in scripted tournaments [Carlini, 2024, Ndzomga, 2024]. Other analyses examine how
LLMs internalize chess rules from PGNs [Stöckl, 2021] and how LLMs can predict chess puzzle
difficulty [Miłosz and Kapusta, 2024] or they include chess as part of a larger benchmark [Khan et al.,
2025]. While these frameworks provide initial insights, they typically focus only on outcome-level
metrics such as win/loss or Elo, often over a narrow set of models. In contrast, our benchmark
systematically exposes these limitations across a diverse model pool, revealing fragility in real-time
play and strategic reasoning.

Strategic Reasoning and Game Benchmarks Our work builds on a growing field of literature
that poses games as testbed for strategic and multi-step reasoning. GTBench [Duan et al., 2024] and
ZeroSumEval [Khan et al., 2025] leverage inter-model competition to assess strategy and robustness,
while ChatArena [Wu et al., 2023c] and MastermindEval [Zhang et al., 2024] extend the space of
game evaluation into multimodal and logic-heavy tasks. Additional studies in multi-game consistency
[Toshniwal et al., 2022] highlight gaps in rule following and tactical depth when LLMs pivot between
environments. While these efforts highlight the strengths and limitations of LLMs in planning,
consistency, and rule/instruction following, they are typically spread across tasks or lack domain-
specific human interpretability. Chess on the other hand, is a deeply studied environment with
transparent rules, interpretable decision sequences, and established human baselines. Our benchmark
combines all of these strengths in a reproducible testbed that evaluates both instruction-following and
multi-step reasoning under game constraints.

5 Conclusion

Chess has long been an important factor in the development of AI systems. However, LLMs, today’s
most powerful generalist models, have yet to have been sufficiently tested on the domain, missing out
on the insights that have often been made by doing so. To remedy this, we introduced LLM CHESS,
a benchmarking framework for reasoning and instruction-following in LLMs in chess. Compared to
standard reasoning benchmarks, our setting is more difficult: unlike math or coding where LLMs
are beginning to reach the level of seasoned experts, LLMs in our chess framework are weak and
many can barely consistently beat even a random player. LLM CHESS also allows for easy dynamic
extensibility through modification of the skill of opponents, as well as resistance to memorization
given the combinatorial spaces in chess.

6 Limitations

With LLM CHESS, we present a framework for evaluating LLMs on reasoning and instruction-
following in chess by calculating Win/Loss, Elo, and per-move diagnostics. We impose a 100-move
cap (200 plies) and restrict each ply to 10 conversation turns with a maximum of 3 action attempts,
which can prematurely end deeper strategic sequences. Prompt length constraints and AG2 client
timeouts (10 min per move) also prevented a lot of model runs from completing their reasoning,
introducing variability in measured performance and limiting reproducibility under longer-horizon
settings. We present additional information about the time out errors in Appendix D.
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A Experimental Settings

We ran all LLMs with a default temperature of 0.3 and Top P of 1.0 for the models that took them as
parameters (some models like OpenAI’s reasoning models don’t take a temperature). If models like
Deepseek-R1 have a recommended temperature (0.6), we try to use that instead.

A.1 Centipawn Calculation using Stockfish

We ran Stockfish v17 (path configurable via stockfish_path) in UCI mode with the following
settings: fixed analysis depth of 20 plies, no time limit per move, a single thread, 128 MB hash
size, MultiPV=1, and Skill Level=20. We convert the engine’s Cp or Mate score to centipawns
via a standardized function: centipawn values directly for Cp evaluations, and ±1000 for any mate
score: positive for winning mates, negative for losing mates. Blunder, Mistake, and Inaccuracy
thresholds are based on Lichess’s Win% cutoffs: 30%, 20%, and 10% respectively [Lichess, 2023].
These hyperparameters provide consistent, interpretable per-ply metrics while keeping analysis costs
tractable.

A.2 Dragon 1 Settings

All Dragon 1 experiments were run on the following computer: Windows 11, WSL 2, Core i5
13600KF, 64GB DDR5 RAM, RTX4090.

A.3 Model Information

In Table 3 we map all the API model names and additional settings (e.g., quantization) to their cleaned
name used in the paper. Note that all open source models not run through an API (e.g., groq) were
run with quantization on a RTX 4090.

A.4 Elo Calculations

To calculate Elo, we played at least 33 total games against varying skill levels in Dragon 1 with
the following models: o3 (low), Grok 3 Mini (high), o4-mini, o3-mini . We provide Win/Loss and
number of games against each skill level in Table 5. Note that we played o3 (low) and Grok 3 Mini
(high) against skills 1-5 (each ≥ 169 games), and o4-mini (high) against skills 1-2 (each ≥ 49
games), and the rest of the models against skill 1 (each ≥ 33 games). We also played o3 (low) against
skill 10 because we found that it performed quite well against skill 5 (71.9% Win/Loss). However,
we found that against skill 10, o3 (low) only achieved a 3.0% Win/Loss, meaning even the most
powerful model we thoroughly tested still has a ways to go.

Pseudocode for the Elo calculations resulting in the values in Figure 3 is in Algorithm 1, which takes
in a list of opponents with their Elo and corresponding win (1), draw (0.5), loss (0) and calculates an
estimate for the LLM’s Elo and a 95% confidence interval. Notably, when calculating Elo we add a
correction of 35 points to correct for the fact that the LLMs always play as black. We base this on
analysis finding that white empirically wins about 54% of games when facing an opponent of the
same rating, which equates to 35 points4.

B Additional Results

B.1 Ablations

We present full results on all our ablations for Grok 3 Mini (low) and o4-mini (low) in Ta-
ble 6. We always play 30 games against a random player with the LLM as black except for
the LLM as white setting, where the roles are reversed. We also use the default unicode board
in all settings except the No Legal Moves setting. Because the default unicode board does not
have all board information (e.g., castling rights), we provide a FEN for No Legal Moves in-
stead, meaning we are comparing to the FEN setting as the No Legal Moves baseline. We also

4https://en.chessbase.com/post/the-sonas-rating-formula-better-than-elo
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Algorithm 1 Estimate True Elo Rating

Require: Records R = {(Ei, Si)}ni=1 ▷ Ei opponent Elo, Si ∈ {0, 0.5, 1}
Require: White-advantage W ▷ 35 Elo
Ensure: True rating Rtrue and 95% CI half-width ME

1: function EXPECTEDSCORE(r, (Ei)
n
i=1)

2: for i← 1 to n do
3: Ŝi ← 1 /

(
1 + 10(Ei−r)/400

)
4: end for
5: return (Ŝi)

n
i=1

6: end function
7: function SCOREDIFF(r)
8: Ŝ ← EXPECTEDSCORE(r, (Ei)

n
i=1)

9: return
∑n

i=1(Si − Ŝi )
10: end function
11: // 1) Solve for the black rating of the LLM
12: Rblack ← FINDZERO(ScoreDiff, [mini Ei − 400, maxi Ei + 400]) ▷ find r such that

ScoreDiff(r) = 0 and is within 400 Elo of the min and max opponent Elos
13: // 2) Compute Fisher information at Rblack

14: Ŝ ← EXPECTEDSCORE(Rblack, (Ei)
n
i=1)

15: I ←
∑n

i=1 Ŝi(1− Ŝi) (ln 10/400)
2

16: SE← 1/
√
I

17: // 3) Adjust for white-advantage and form 95% CI
18: Rtrue ← Rblack +W
19: ME← 1.96× SE
20: return (Rtrue, ME)

note that each time the LLM fails to select a valid move in make_move, it is provided a mes-
sage with the board state in FEN like Failed to make move: illegal uci: ’d5e4’ in
1k3b2/1p2pp1r/p7/3p4/3r4/8/PKb5/8 b - - 3 35. So note when we change the board state
in our ablations, regardless of what we change it to we still always see this FEN when an illegal move
is made.

Implementation Details For Always Board State we remove get_current_board from the list
of actions and instead always provide the board state in the prompt. For Always Legal Moves we do
the same but for get_legal_moves. For Only make_move we remove both get_current_board
and get_legal_moves from the list of actions and instead include the board state and legal moves
in the prompt, leaving make_move as the only action. This mimics a non-agentic scenario since there
is only one action needed in every conversation, so each should only have one turn unless a mistake
is made in making a move. We present examples of ASCII and FEN (Forsyth–Edwards Notation)
boards below:

Example of ASCII board

rnbqkbnr
pppppppp
........
........
.P......
........
P.PPPPPP
RNBQKBNR

Example of FEN board

rnbqkbnr/pppppppp/8/8/6P1/8/PPPPPP1P/RNBQKBNR b KQkq - 0 1

16



For No Legal Moves, we simply remove get_legal_moves and replace the unicode board with a
FEN board. For Previous Moves, we include all previous moves in an ordered list in UCI notation
before the Game Loop Prompt. Here, it is black’s turn and there have been 10 full moves and 21 plys:

Previous Moves Prompt

Previous moves (UCI): 1. e2e3 g8f6, 2. a2a4 e7e5, 3. e1e2 b8c6, 4. b1a3 f8e7, 5. a3b1 e5e4,
6. b2b3 e8g8, 7. c1a3 d7d5, 8. g2g4 f6g4, 9. a3d6 e7d6, 10. d1e1 g4e5, 11. b1a3

For Previous Moves + Only make_move, we use the Only make_move setting but prepend the
Previous Moves Prompt in the same way as for Previous Moves.

Analysis Overall, we see for our Actions ablations, performance always increases for both models
when we choose to remove actions and include their information in the prompt instead, suggesting
that the models still struggle to choose the actions they need in the agentic system.

For Board Representation, we see Grok 3 Mini (low) performance is robust to changes from unicode
to ASCII or FEN, while for o4-mini (low) ASCII is 15% better than unicode and FEN is 6.7% better
than ASCII. We also see that when the LLM is the white player performance increases as expected,
but still remains below 90% for both models.

When Changing Information, we see removing the ability to query for legal moves decreases
performance by almost 30% for Grok 3 Mini (low) and almost 10% for o4-mini (low) compared
to the FEN baseline. This shows that o4-mini (low) has a better grasp of the legal moves, but both
models struggle, as expected. We see that while including previous moves improves the Win/Loss of
both models, it also decreases the average Blunder rate (Table 7). In fact, while o4-mini (low) only
improves by 3.4% in Win/Loss over the baseline, there is a large drop in blunders of 9.6%, meaning
that including previous moves helps the model avoid larger mistakes during play. When including
previous moves in the Only make_move setting, we see similar but slightly worse performance than
in Only make_move, suggesting when the model is only focused on making the next move without
needing to call other actions for information, the previous moves either don’t help or slightly harm
performance.

B.2 LLMs with 0% Win/Loss

In Table 4, we include all models we ran with 0% Win/Loss (35 models) versus a random opponent
that attempted to complete 30 games. We excluded any games with timeout or API errors. For these
models, all losses are due to instruction-following failures with models making too many invalid
actions or conversation turns.

B.3 Full Results

For direct comparisons, in the main body we presented results for LLMs vs Random on 30 games.
However, to increase the reliability of our evaluation, we ran an increased amount of games on a
variety of models. We include results for all games we ran along with the number of games for each
result in Table 8. We see that even with more games, the general ranking of models and pattern
remains the same: reasoning models perform best, while non-reasoning models struggle to reach over
50% Win/Loss.

B.4 Comparison with Other Reasoning Benchmarks

Large language models excel on standard reasoning benchmarks: for instance, OpenAI’s o1 model
achieves 11.1 out of 15 (74%) on the AIME with a single sample per problem, 12.5 out of 15 (83%)
using self-consistency over 64 samples, and 13.9 out of 15 (93%) after re-ranking 1000 samples via
a learned scorer [OpenAI, 2024]. These scores exceed the performance of the majority of AIME
participants; for comparison, scoring 10 or above typically places a student in the top 5% of test-takers
nationally. On programming contests like Codeforces, o1 attains an Elo of 1258 (62nd percentile) in
its preview release and 1673 (89th percentile) in its main version, surpassing most active competitors
on the platform. In stark contrast, when evaluated on our interactive chess benchmark, LLMs peak
at Elo 758 against an engine calibrated to chess.com, corresponding to a skill level far below that
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of an average online chess player. This contrast underscores a key insight: while LLMs can exceed
the abilities of most humans in math and coding competitions, they exhibit a striking weakness in
real-time, multi-step strategic environments like chess. Our benchmark surfaces these limitations
by requiring not only domain knowledge but also agentic consistency, planning, and game state
awareness.

C Implementation Details

Here we include all prompts supplied to the model, as well as a sample dialog for a single move.
Below is the prompt that initiates the conversation with the LLM:

Game Loop Prompt

You are a professional chess player and you play as black. Now is your turn to make a move.
Before making a move you can pick one of the following actions:
- ‘get_current_board’ to get the schema and current status of the board
- ‘get_legal_moves’ to get a UCI formatted list of available moves
- ‘make_move <UCI formatted move>’ when you are ready to complete your turn (e.g.,
‘make_move e2e4’)
Respond with the action.

Reflection prompt for when the chess environment can’t parse an action in the LLM response:

Reflection Prompt for Unparseable Action

Invalid action. Pick one, reply exactly with the name and space delimitted argument:
get_current_board, get_legal_moves, make_move <UCI formatted move>

Reflection prompt for illegal move request by LLM:

Reflection Prompt for Illegal Move

Failed to make move: illegal uci: ‘b6c5’ in
r1bqk2r/pppp1ppp/1N2n1P1/4pKb1/8/P4Q1N/1PPPP1R1/R1B2B2 b kq - 12 25

Sample dialog of a conversation the LLM has in the agentic environment to output a single move (the
board is encoded in Unicode characters and provided to the LLM):

Sample Dialog for Single Move

Proxy (to Player_Black):
You are a professional chess player and you play as black. Now is your
turn to make a move. Before making a move you can pick one of the
following actions:
- ‘get_current_board’ to get the schema and current status of the board
- ‘get_legal_moves’ to get a UCI formatted list of available moves
- ‘make_move <UCI formatted move>’ when you are ready to complete your
turn (e.g., ’make_move e2e4’)
Respond with the action.

Player_Black (to Proxy):
get_current_board

Proxy (to Player_Black):
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RNBQKBNR
PPPPPPPP
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
pppppppp
rnbqkbnr

Player_Black (to Proxy):
get_legal_moves

Proxy (to Player_Black):
a7a6, b7b6, c7c6, d7d6, e7e6, f7f6, g7g6, h7h6, a7a5, b7b5, c7c5, d7d5,
e7e5, f7f5, g7g5, h7h5

Player_Black (to Proxy):
make_move e7e5

Proxy (to Player_Black):
Move made, switching player

D OpenAI Reasoning Model Timeouts

OpenAI reasoning models exhibited occasional timeout errors at higher levels of reasoning effort.
They were the only models we tested that often failed to return a response within the default AG2
client timeout of 10 minutes, throwing the following error:

TimeoutError: OpenAI API call timed out. This could be due to congestion
or too small a timeout value. The timeout can be specified by setting
the ‘timeout’ value (in seconds) in the llm_config (if you are using agents)
or the OpenAIWrapper constructor (if you are using the OpenAIWrapper
directly).

In all cases, no retries were made. For random opponents these games were excluded, but against
Dragon 1 they were treated as losses for the LLM. As we focus on real-world chess performance,
it is reasonable to enforce consistent time limits and thus assigning a loss should a player fail to
make a move. We note that these issues are likely due to OpenAI’s server or the way it handles high
reasoning efforts. Timeout issues are the reason for the lower ranking of some OpenAI reasoning
models when tested with higher reasoning efforts.

Increasing the timeout did not solve the issue. We suspect that some of the game prompts triggered
failure modes in models, just like some games states and corresponding prompts provoked hallucinated
moves in non-reasoning models.

The the statistics on timeout errors observed while testing Dragon 1 vs o3-mini, o3, and o4-mini are
in Table 9.
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Table 3: API name and settings (e.g., quantization, reasoning effort) mapped to the clean model name
used in the paper. If quantized, we ran locally.

API Name and Settings Cleaned Model Name

gpt-4-0613 GPT-4
qwen2.5-7b-instruct-1m Qwen2.5-7B-Instruct
internlm3-8b-instruct InternLM3-8B-Instruct
qwen-max-2025-01-25 Qwen2.5-Max
qwen2.5-14b-instruct@q8_0 Qwen2.5-14B-Instruct (Q8)
qwq-32b QWQ-32B
o3-2025-04-16-low o3 (low)
gpt-4o-2024-08-06 GPT-4o (2024-08-06)
mistral-nemo-12b-instruct-2407 Mistral-Nemo-Instruct-2407
gpt-35-turbo-1106 GPT-3.5 Turbo (11/06)
o1-preview-2024-09-12 o1-preview
grok-3-mini-beta-high Grok 3 Mini (high)
claude-v3-5-sonnet-v1 Claude 3.5 Sonnet
amazon.nova-lite-v1 Amazon Nova Lite
gemini-2.0-flash-exp Gemini 2.0 Flash (exp)
o4-mini-2025-04-16-low o4-mini (low)
llama-3-70b-instruct-awq Llama-3-70B-Instruct
gpt-4.5-preview-2025-02-27 GPT-4.5
deepseek-chat-v3 DeepSeek-V3
gemma-2-27b-it@q6_k_l Gemma 2 27B
llama3.1-8b Llama-3.1-8B
claude-v3-5-haiku Claude 3.5 Haiku
qwen2.5-72b-instruct Qwen2.5-72B-Instruct
gpt-4.1-nano-2025-04-14 GPT-4.1 Nano
granite-3.1-8b-instruct Granite-3.1-8B-Instruct
llama3-8b-8192 Llama-3-8B
gemma2-9b-it-groq Gemma 2 9B
qwen-turbo-2024-11-01 Qwen Turbo
gpt-4o-2024-11-20 GPT-4o (2024-11-20)
amazon.nova-pro-v1 Amazon Nova Pro
o1-2024-12-17-low o1 (low)
qwen-plus-2025-01-25 Qwen Plus
gpt-35-turbo-0301 GPT-3.5 Turbo (03/01)
mercury-coder-small Mercury Coder Small
deephermes-3-llama-3-8b-preview@q8 DeepHermes-3-Llama-3-8B-Preview
o4-mini-2025-04-16-high o4-mini (high)
gpt-4o-mini-2024-07-18 GPT-4o Mini
gpt-4-turbo-2024-04-09 GPT-4 Turbo
o4-mini-2025-04-16-medium o4-mini (medium)
gemini-2.5-pro-preview-03-25 Gemini 2.5 Pro Preview
gpt-4-32k-0613 GPT-4 32K
phi-4 Phi-4
gemini-2.0-flash-thinking-exp-1219 Gemini 2.0 Flash Thinking
mistral-small-instruct-2409 Mistral-Small-Instruct-2409
mistral-small-24b-instruct-2501@q4_k_m Mistral-Small-24B-Instruct-2501
llama-2-7b-chat Llama-2-7B-Chat
gemma-3-12b-it@iq4_xs Gemma 3 12B (iq4)
claude-v3-7-sonnet-thinking_10000 Claude 3.7 Sonnet Thinking
gemini-1.5-flash-001 Gemini 1.5 Flash
deepseek-chat-v3-0324 DeepSeek-V3 (0324)
deepseek-reasoner-r1 Deepseek-R1
llama-4-scout-cerebras Llama 4 Scout
chat-bison-32k@002 Chat-Bison-32K
qwen2.5-14b-instruct-1m Qwen2.5-14B-Instruct
o1-2024-12-17-medium o1 (medium)
claude-v3-haiku Claude 3 Haiku
grok-3-mini-beta-low Grok-3 Mini (low)
o3-mini-2025-01-31-low o3-mini (low)
llama-3.1-tulu-3-8b@q8_0 Llama-3.1-Tulu-3-8B
gpt-4o-2024-05-13 GPT-4o (2024-05-13)
gpt-35-turbo-0125 GPT-3.5 Turbo (01/25)
claude-v3-7-sonnet Claude 3.7 Sonnet
gemma-2-9b-it-8bit Gemma 2 9B (8bit)
gpt-35-turbo-0613 GPT-3.5 Turbo (06/13)
gemini-2.0-flash-lite-preview-02-05 Gemini 2.0 Flash Lite (preview)
o3-mini-2025-01-31-medium o3-mini (medium)
gpt-4.1-2025-04-14 GPT-4.1
gemini-2.0-flash-lite-001 Gemini 2.0 Flash Lite
o3-2025-04-16-medium o3 (medium)
gemini-2.0-flash-001 Gemini 2.0 Flash
deepseek-r1-distill-qwen-14b@q8_0 DeepSeek-R1-Distill-Qwen-14B
ministral-8b-instruct-2410 Mistral 8B Instruct
deepseek-r1-distill-qwen-32b@q4_k_m DeepSeek-R1-Distill-Qwen-32B
llama-3.3-70b Llama-3.3-70B
grok-2-1212 Grok-2
gemma-3-12b-it@q8_0 Gemma 3 12B (q8)
gemma-3-27b-it@iq4_xs Gemma 3 27B
claude-v3-5-sonnet-v2 Claude 3.5 Sonnet v2
gpt-4.1-mini-2025-04-14 GPT-4.1 Mini
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Table 4: LLMs with a 0% Win/Loss on 30 games along with the reasons for their losses. Note that
none of these models were able to complete games but instead always lost due to instruction-following
failures. Reasoning models are shaded.

Model Too Many Wrong Actions Max Turns

Amazon Nova Lite 76.7 23.3
Amazon Nova Pro 100.0 0.0
Claude 3 Haiku 10.0 90.0
Chat-Bison-32K 100.0 0.0
DeepHermes-3-Llama-3-8B-Preview 96.7 3.3
DeepSeek-R1-Distill-Qwen-14B 100.0 0.0
DeepSeek-R1-Distill-Qwen-32B 73.3 26.7
Gemini 2.0 Flash Lite (preview) 100.0 0.0
Gemini 2.0 Flash Thinking 100.0 0.0
Gemma 2 9B 100.0 0.0
Gemma 3 12B (iq4) 100.0 0.0
Gemma 3 12B (q8) 100.0 0.0
Gemma 3 27B 100.0 0.0
GPT-3.5 Turbo (01/25) 100.0 0.0
GPT-3.5 Turbo (03/01) 100.0 0.0
GPT-3.5 Turbo (06/13) 100.0 0.0
GPT-3.5 Turbo (11/06) 100.0 0.0
GPT-4.1 Nano 100.0 0.0
Granite-3.1-8B-Instruct 60.0 40.0
InternLM3-8B-Instruct 60.0 40.0
Llama-2-7B-Chat 100.0 0.0
Llama-3.1-Tulu-3-8B 23.3 76.7
Llama-3-8B 90.0 10.0
Llama-3.1-8B 80.0 20.0
Mercury Coder Small 100.0 0.0
Mistral 8B Instruct 100.0 0.0
Mistral-Nemo-Instruct-2407 100.0 0.0
Mistral-Small-24B-Instruct-2501 100.0 0.0
Mistral-Small-Instruct-2409 100.0 0.0
Phi-4 100.0 0.0
Qwen Turbo 100.0 0.0
Qwen2.5-14B-Instruct 70.0 30.0
Qwen2.5-14B-Instruct (Q8) 96.7 3.3
Qwen2.5-7B-Instruct 100.0 0.0
QWQ-32B 93.3 6.7
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Table 5: Total number of games played against each skill along with Win/Loss for all games playing
against that skill.

Model Skill Total Games Win/Loss

o3 (low)

1 33 81.8
2 33 72.7
3 33 75.8
4 33 68.2
5 32 71.9

10 33 3.0

Grok 3 Mini (high)

1 33 51.5
2 34 48.5
3 34 41.2
4 34 38.2
5 34 25.0

o4-mini (high) 1 27 61.1
2 22 56.8

o3-mini (high) 1 31 67.7
2 26 57.7

o4-mini (medium) 1 40 53.8

o3-mini (medium) 1 38 39.5

o4-mini (low) 1 33 30.3

o3-mini (low) 1 33 10.6

Table 6: Win/Loss on ablations. LLM CHESS is the baseline.
Setting Grok 3 Mini (low) o4-mini (low)

LLM CHESS 61.7 73.3

Actions
Always Board State 66.7 83.3
Always Legal Moves 68.3 93.3
Only make_move 71.7 96.7

Board Representation
ASCII 63.3 88.3
FEN 63.3 95.0
LLM as White 78.3 83.3

Changing Information
No Legal Moves 36.7 86.7
Previous Moves 75.0 76.7
Previous Moves + Only make_move 66.7 95.0

Table 7: Average Blunder rate (%) per ply when including previous moves vs baseline. Lower is
better.

Model LLM CHESS Previous Moves

Grok 3 Mini (low) 9.1 3.5
o4-mini (low) 11.2 1.6

22



Table 8: Full results for LLM vs. Random on variable number of ≥ 30 games. Reasoning models are
shaded. The percentage of games ending due to checkmate from either side, instruction-following
failures, and draws are also displayed.

Player Total Games Win/Loss Checkmate Instruction Draws

Checkmate Wrong Actions Max Turns Stalemate Insuff. Material 5x Repetition Max Moves

o3 (medium) 48 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
o3 (low) 41 96.3 92.7 0.0 0.0 0.0 0.0 2.4 4.9
o4-mini (high) 38 96.1 92.1 0.0 0.0 5.3 2.6 0.0 0.0
o1 (medium) 40 91.2 82.5 0.0 0.0 10.0 2.5 0.0 5.0
Grok 3 Mini (high) 44 86.4 72.7 0.0 0.0 4.5 4.5 0.0 18.2
o4-mini (medium) 159 84.3 68.6 0.0 0.0 11.9 12.6 0.0 6.9
o1 (low) 47 78.7 57.4 0.0 0.0 6.4 19.1 0.0 17.0
o4-mini (low) 74 70.9 44.6 0.0 0.0 17.6 9.5 0.0 28.4
o1-preview 30 68.3 46.7 10.0 0.0 3.3 20.0 0.0 20.0
o3-mini (medium) 44 67.0 36.4 2.3 0.0 20.5 4.5 0.0 36.4
Claude 3.7 Sonnet Thinking 37 62.2 24.3 0.0 0.0 0.0 18.9 0.0 56.8
Grok 3 Mini (low) 52 58.7 21.2 0.0 0.0 13.5 1.9 0.0 63.5
Gemini 2.5 Pro Preview 33 53.0 36.4 27.3 3.0 15.2 9.1 0.0 9.1
GPT-4 32K 33 48.5 3.0 0.0 0.0 0.0 0.0 0.0 97.0
Qwen2.5-Max 60 48.3 3.3 0.0 0.0 0.0 0.0 0.0 96.7
GPT-4o (2024-11-20) 71 47.9 12.7 0.0 0.0 0.0 0.0 0.0 87.3
Claude 3.5 Sonnet v2 60 47.5 8.3 3.3 0.0 1.7 0.0 0.0 86.7
Claude 3.5 Sonnet 60 46.7 18.3 1.7 0.0 0.0 0.0 0.0 80.0
GPT-4 Turbo 30 46.7 6.7 0.0 0.0 0.0 0.0 0.0 93.3
GPT-4.5 44 46.6 6.8 0.0 0.0 0.0 0.0 2.3 90.9
GPT-4 33 45.5 9.1 0.0 0.0 0.0 0.0 0.0 90.9
GPT-4o (2024-08-06) 59 44.1 15.3 0.0 0.0 1.7 0.0 0.0 83.1
GPT-4.1 80 43.8 13.8 1.2 0.0 0.0 0.0 0.0 85.0
Claude 3.5 Haiku 42 42.9 7.1 2.4 4.8 2.4 0.0 0.0 83.3
Claude 3.7 Sonnet 42 40.5 16.7 11.9 0.0 2.4 0.0 0.0 69.0
GPT-4o (2024-05-13) 60 40.0 11.7 8.3 0.0 0.0 0.0 0.0 80.0
o3-mini (low) 56 37.5 7.1 19.6 8.9 3.6 0.0 0.0 60.7
Deepseek-R1 31 32.3 22.6 51.6 6.5 3.2 9.7 0.0 6.5
GPT-4.1 Mini 84 30.4 9.5 3.6 26.2 0.0 0.0 0.0 60.7
GPT-4o Mini 30 30.0 3.3 36.7 0.0 0.0 0.0 0.0 60.0
Llama-3-70B-Instruct 30 25.0 3.3 46.7 0.0 0.0 0.0 0.0 50.0
Gemini 2.0 Flash 67 21.6 10.4 55.2 0.0 0.0 0.0 0.0 34.3
Grok-2 49 19.4 6.1 63.3 0.0 0.0 0.0 0.0 30.6
Gemini 1.5 Flash 30 16.7 6.7 60.0 0.0 0.0 0.0 0.0 33.3
Gemma 2 27B 30 13.3 6.7 66.7 0.0 0.0 0.0 0.0 26.7
Llama 4 Scout 39 10.3 2.6 64.1 12.8 0.0 0.0 0.0 20.5
Gemma 2 9B (8bit) 30 6.7 3.3 83.3 0.0 0.0 0.0 0.0 13.3
DeepSeek-V3 (0324) 45 5.6 2.2 88.9 2.2 0.0 0.0 0.0 6.7
Llama-3.3-70B 42 4.8 9.5 73.8 7.1 0.0 0.0 0.0 9.5
Qwen Plus 33 4.5 0.0 90.9 0.0 0.0 0.0 0.0 9.1
Gemini 2.0 Flash (exp) 30 3.3 0.0 90.0 3.3 0.0 0.0 0.0 6.7
Qwen2.5-72B-Instruct 30 3.3 3.3 90.0 0.0 0.0 0.0 0.0 6.7
Gemini 2.0 Flash Lite 66 1.5 4.5 95.5 0.0 0.0 0.0 0.0 0.0
DeepSeek-V3 70 1.4 1.4 90.0 5.7 0.0 0.0 0.0 2.9

Table 9: Number of timeout errors in OpenAI reasoning models when facing Dragon 1 opponents
with varying skill levels. The default timeout is 10 minutes.

Opponent Skill Level LLM Total logs Errors

1 o3 (low) 33 0
1 o3-mini (low) 33 0
1 o3-mini (medium) 38 0
1 o3-mini (high) 33 2
1 o4-mini (low) 33 0
1 o4-mini (medium) 40 0
1 o4-mini (high) 33 6
2 o3 (low) 33 0
2 o3-mini (high) 30 4
2 o4-mini (high) 30 8
2 o4-mini (high) w/ 20m timeout 29 7
2 o4-mini (high) w/ 60m timeout 6 4
3 o3 (low) 33 0
4 o3 (low) 33 0
5 o3 (low) 35 0
10 o3 (low) 33 0
10 o3 (medium) w/ 60m timeout 11 2
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s key contributions.
Introducing the LLM CHESS agentic benchmarking framework, defining a comprehensive
suite of per-model, per-game, and per-ply metrics, and presenting evaluation results over
50+ LLMs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicate Section 6 to discuss limitations, such as the 100-move cap,
prompt length constraints, and timeout issues. We reflect on how these factors influence the
robustness and generalizability of our benchmark
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All formulas underlying our Elo estimation and win-probability models are
fully stated with their assumptions in Section 2.2, numbered and cross-referenced, and will
becomplemented by a complete derivation and Fisher information proof in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full details on model configurations (temperature, Top-P), data
splits, evaluation scripts, and hyperparameters in Section 3 and Appendix A, and will release
our code and logs to enable exact reproduction of all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code scripts and evaluation logs will be made publicly available on GitHub,
and the full datasets of game records and metrics will be hosted on Hugging Face, with
detailed instructions for downloading and reproducing every experiment provided in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3.1 and Appendix A show all the evaluation settings, including
temperature (0.3), Top-P (1.0), instruction-following timeouts, game caps (100 moves, 10
turns per ply), and engine skill levels, alongside script commands and hyperparameter values
needed to reproduce every experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We report 95 % confidence intervals for Elo estimates (via Fisher information)
in Figure 3 and include standard deviations for centipawn and Win % metrics across games,
with all error-bar definitions and calculation methods to be detailed in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our paper does not specify the compute infrastructure (e.g., CPU/GPU types,
number of workers, memory requirements, or wall-clock runtimes) used for running LLM
evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work involves automated evaluations of pretrained models on synthetic
chess games and does not involve human participants, personal data, or activities that raise
ethical concerns under the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss positive impacts, providing a rigorous, extensible benchmark to
improve LLM reasoning robustness and drive safer AI development, as well as potential
negative uses, such as adversarial fine-tuning of LLMs for game-theoretic exploits or misuse
in generating deceptive, rule-based content, in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work evaluates existing LLMs on synthetic chess games and does not
release any new pretrained models or scraped datasets that pose misuse risks, so no additional
safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party code, data, and models—including Komodo’s Dragon engine,
Lichess metrics code, and publicly available PGN data—are explicitly cited with URLs, and
their respective licenses and terms of use are noted in our bibliography and supplemental
material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We publish the full LLM CHESS game dataset and the evaluation framework’s
code on GitHub (including README, usage examples, and license) and Hugging Face
(with dataset schema, download instructions, and versioning), ensuring all new assets are
thoroughly documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study only evaluates pre-trained models on synthetic chess interactions
and does not involve any human subjects or crowdsourced data collection.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study only evaluates pre-trained models on synthetic chess interactions
and does not involve any human subjects or crowdsourced data collection.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology revolves around playing chess with LLMs, which is
standard practice for model evaluations in this domain and does not involve any non-standard
or opaque use of LLMs that would require a separate declaration.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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