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Abstract

Test-time scaling has become a popular strategy to boost large language model
performance on complex reasoning tasks. A standard approach involves sampling
multiple candidate solutions, then selecting the final answer via self-consistency or
a verifier model. While generative verifiers can outperform self-consistency, they
incur substantial compute overhead due to expensive chain-of-thought generation,
and often yield limited gains under practical budget constraints. Discriminative ver-
ifiers, by contrast, are far more efficient but typically underperform self-consistency
on challenging reasoning tasks when the pool of candidate solutions grows large.
In this work, we show that a weak discriminative verifier can be transformed into a
strong test-time scaler, achieving both efficient verification and strong downstream
performance. Specifically, by pairing a lightweight discriminative verifier with a
simple pessimism penalty that down-weights low-support answers, our method can
consistently outperform self-consistency with minimum overhead in verification
compute. On AIME2024, DeepSeek-R1-Distill-Qwen-32B paired with our method
improves from 68.2% to 79.7% with just 4 candidate solutions – matching the
performance of o3-mini (medium) and outperforming self-consistency by 2.2% for
only 0.5% additional compute. Our results suggest that lightweight discriminative
verification with pessimistic scoring offers a practical and efficient solution to
test-time scaling. Code is available at https://anonymous.4open.science/
r/DPV-NeurIPS2025.

1 Introduction

Since the release of OpenAI’s o1 OpenAI (2024), there has been substantial progress in enhancing
the reasoning capabilities of large language models (LLMs) by scaling test-time compute (Snell
et al., 2024) across domains such as mathematics, coding, and general problem solving. Broadly
speaking, test-time scaling refers to strategies that can improve model performance on downstream
tasks by allocating additional computational resources during inference. A canonical example is
self-consistency (SC) (Wang et al., 2023b), which involves sampling multiple completions from the
model and selecting the final answer via a majority vote. Alternatively, one can enhance answer
selection by employing a verifier model that scores and ranks candidate solutions based on their
likelihood of correctness.

Initial approaches to verification relied on discriminative models that output scalar correctness scores
for individual solutions or steps (Cobbe et al., 2021; Lightman et al., 2023). More recently, some
works have explored leveraging the generative abilities of LLMs for verification purposes. These
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Figure 1: Left: Accuracy rates of DeepSeek-R1-Distill-Qwen-32B on AIME2024 under various
selection algorithms. DV underperforms SC for all but small values of N , but DPV maintains a
sizable margin over SC as N scales. DPV matches the accuracy of DeepSeek-R1 and o3-mini
(medium) when N = 4 and ties o3-mini (high) with additional compute. Right: DPV consistently
outperforms SC for a negligible amount of additional compute on AIME2025, and even outperforms
GPV (Shi & Jin, 2025) for most practical inference budgets. N is doubled at each point along the
x-axis. For GPV, each solution is verified twice.

models, also known as generative verifiers (Zhang et al., 2024c; Mahan et al., 2024), produce chain-
of-thought (CoT) rationales before outputting a verdict. This generative approach opens up a new
avenue for test-time scaling: increasing the number of verification passes over candidate solutions.
As a result, there is a growing number of works studying how to achieve stronger test-time scaling
through scaling verification compute (Zhao et al., 2025; Shi & Jin, 2025)

While generative verifiers generally offer stronger performance, they require significantly more
compute to do so. These verifiers are often reasoning-heavy models that generate lengthy CoTs
before producing a verdict, resulting in overhead that rivals or even exceeds the cost of generating the
candidate solutions. Indeed, recent work by Singhi et al. (2025) demonstrates that when verification
cost is properly accounted for, generative verifiers underperform SC under low inference budgets. In
fact, they require up to 8× more compute just to match SC, and deliver marginal gains (3.8%) even
when granted 128× the compute budget.

Why is scaling verification-time compute often less effective than scaling compute for solution
generation? A key reason is that solution correctness is ultimately bottlenecked by the quality of the
candidate solutions sampled from the solver. If the solver fails to produce any correct candidates,
no verifier—regardless of strength—can recover the correct answer. Moreover, the SC baseline is
already quite strong, nearing pass@N on many tasks. To surpass SC, a verifier must both (1) agree
with the majority when it is correct, and (2) successfully identify the correct minority solution when
the majority is wrong. These requirements make it difficult for a verifier to deliver significant gains,
especially under a fixed compute budget. As a result, allocating additional compute to generating
candidate solutions typically yields better returns than spending it on verification.

Given these limitations, it is preferable to minimize the cost of verification under constrained budgets.
Discriminative verifiers present a promising alternative due to their computational efficiency. Unlike
generative verifiers, which require both a costly prefilling step and sequential token generation during
decoding, discriminative verifiers only perform a single forward pass (i.e., prefilling), avoiding the
decoding bottleneck. However, despite their speed advantage, discriminative verifiers exhibit limited
capabilities on complex reasoning tasks (Tan et al., 2025), often underperforming SC as the pool of
candidate solutions grows.

In this work, we show that a weak discriminative verifier can nevertheless be transformed into an
effective test-time scaler, offering the best of both worlds: consistent improvements over SC with
minimal verification overhead. The key insight is to exploit the signal from the already strong
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Figure 2: An example question and candidate solutions from AIME2024, along with the distribution
of verification scores. The correct answer is 113. SC simply selects the most frequent answer, which
in this case is 115, while DV is misled by a high-scoring distractor and selects the answer 250.
Meanwhile, by discounting the verification scores by each answer’s support among the candidates,
DPV identifies the correct answer.

SC baseline and enhance it with additional, lightweight verification scores from the weak verifier.
Inspired by the pessimistic verification strategy of Shi & Jin (2025), which penalizes overconfident
reward estimates in generative models, we propose a discriminative variant adapted to our setting.
This method allows even a small 7B verifier to act as an effective test-time scaling module. As
Figure 1 demonstrates, while this weak verifier underperforms SC when used in isolation (e.g., for
Best-of-N selection), combining it with our pessimistic scoring mechanism consistently improves
over SC on AIME2024 (as well as other math and general reasoning benchmarks), all while keeping
verification costs a tiny fraction over the generation compute (<1.5%). With our test-time scaling
method, we can improve the AIME2024 accuracy of DeepSeek-R1-Distill-Qwen-32B from 68.2%
to 79.7% with only 4 candidate solutions, matching the performance of o3-mini (medium) and
outperforming SC by 2.2%.

Our contributions are as follows:

• We introduce a novel discriminative pessimistic verification (DPV) strategy, which discounts
the verifier’s score by an answer’s support among the candidate solutions, to enhance verifier
reliability.

• We empirically validate our approach across various reasoning tasks, showing that it consis-
tently outperforms SC and DV methods across a number of settings for a negligible amount
of additional compute.

• We demonstrate that our approach outperforms generative verification under practical
compute budgets, enabling strong test-time scaling through weak verification.

2 Preliminaries

Repeated sampling. Repeated sampling is a test-time scaling technique that involves generating a
batch of N independent candidate solutions and then selecting a final answer from among them. As
N increases, the probability that at least one solution is correct also rises (i.e., Pass@N improves;
see Figure 1) (Cobbe et al., 2021). However, this leaves open the central challenge of selecting a final
answer from among the candidates in the absence of ground truth.

Self-consistency. Self-consistency (SC) (Wang et al., 2023b) addresses this by grouping responses
by their final answer and taking the majority vote. While this approach is robust when the correct
answer is common, it can fail when a compelling but incorrect answer is dominant among the
candidates.
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Best-of-N . Another strategy is best-of-N (BoN) selection (Charniak & Johnson, 2005; Cobbe
et al., 2021), which uses a verifier to score each solution and selects the highest-scoring one. A strong
verifier can identify correct but rare responses that SC might miss. However, as N increases, it can
also be misled by confident yet incorrect responses, highlighting a long-tail vulnerability. Verifiers
come in two forms:

• Discriminative verifiers (or reward models) (Cobbe et al., 2021) assign a scalar score (e.g.,
in [0, 1]) to each response. We refer to this setting as discriminative verification (DV).

• Generative verifiers (Zhang et al., 2025) prompt an LLM to judge correctness via free-form
CoT reasoning. Generative verifiers can benefit from inference-time scaling by indepen-
dently sampling multiple verification chains and aggregating their outputs for a more robust
verdict.

Pessimistic Best-of-N . To guard against the long-tail of high-scoring but incorrect responses, one
can subtract a pessimism penalty from each verifier score, analogous to a lower-confidence bound
in multi-armed bandits (Auer et al., 2002). For example, Shi & Jin (2025) penalizes a generative
verifiers scores proportional to ln(NM)/(nkM + 1) for each answer cluster of size nk, effectively
interpolating between best-of-N and self-consistency. When paired with a discriminative verifier, we
refer to it as discriminative pessimistic verification (DPV).

3 Effective Discriminative Verification

In this section, we outline the techniques that we use to train our discriminative verifier, as well as the
discriminative pessimistic verification (DPV) algorithm that we use to perform effective test-time
scaling.

3.1 Training a discriminative verifier

Dataset curation. We sample 32k math problems from NuminaMath (LI et al., 2024), which
aggregates problems from Chinese K-12 exams, Orca-Math (Mitra et al., 2024), AoPS forums, and
various Olympiads (e.g., IMO, APMO, BMO), among other sources. We decontaminate the training
dataset by excluding any problem whose fuzzy-match similarity to an entry in our evaluation sets
exceeds 80. For each question, we sample one response from each of ten LLMs: DeepSeek-R1 and
its six distilled variants (DeepSeek-AI et al., 2025), DeepScaleR-1.5B-Preview (Luo et al., 2025b),
and both the preview and production releases of QWQ-32B (Team, 2024, 2025). We grade each
response for correctness using HuggingFace’s Math-Verify toolkit (Kydlíček, 2025), which parses
the model’s final answer and performs symbolic equivalence checks against the reference solution.
We throw out problems for which all ten solutions are either correct or incorrect, leaving just 11,670
response groups for training.

Verifier training. Following prior work (Qwen et al., 2025; Yang et al., 2024), we replace the
language modeling head of the LLM (specifically DeepSeek-R1-Distill-Qwen-7B) with a two-layer
scaler value head. We train our verifier using a Bradley-Terry ranking loss combined with an L2

regularization term (Ouyang et al., 2022; Kirchner et al., 2024). Concretely, our loss is

L = − 1

|P | |N |
∑
i∈P

∑
j∈N

log σ
(
ri − rj

)
+

λ

2
E
(
r2
)
,

where r = (r1, . . . , rm) are the logits assigned by the verifier to a batch of m responses, σ(x) is
the logistic function, and P and N are the sets of correct and incorrect responses, respectively. The
first term implements the Bradley–Terry model by maximizing the probability σ(ri − rj) that every
correct response i ∈ P outranks every incorrect response j ∈ N (Bradley & Terry, 1952), and the
second term keeps score head well-behaved and centered around zero. By computing all |P | × |N |
comparisons in one vectorized pass instead of sampling pairs, we gain both higher throughput
and more stable gradients. Additional training details, including hyperparameters are provided in
Appendix A.
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Figure 3: Blue: The loss decreases over one epoch of training. Red: The score margin—the
difference in score assigned to correct solutions and incorrect solutions on average across a global
batch—increases during training. Together, these indicate the discriminative verifier learns to
discriminative between correct and incorrect solutions.

3.2 Discriminative pessimistic verification

Repeatedly sampling independent solutions boosts the chance that at least one is correct (improving
pass@N ), but leaves open the question of which answer to select. SC (Wang et al., 2023b) tends to
ignore rare yet correct solutions, while DV Cobbe et al. (2021) can catch rare solutions but is prone
to selecting high-scoring distractors in the long tail. In practice, reliably selecting the final answer
requires balancing the verifier’s confidence in each candidate solution against its support among the
other candidates.

To address this, Shi & Jin (2025) introduces pessimistic verification in which the N responses are
grouped by their final answer a and assigned a penalized score of the form

Score(ak) = r̄(ak) − αΨ(N, nk),

where nk is the support or frequency of ak, r̄(ak) is the mean score over nk verifications, and
Ψ: N×N→ R≥0 is any non-increasing “penalty function” in the support nk. The hyperparameter α
interpolates between score-driven (i.e., BoN) and frequency-driven (i.e., SC) selection. When α = 0,
the penalty term vanishes and we select the answer group with the highest mean verification score;
this differs from true BoN, which would pick the single response with the highest verification score.
In the opposite extreme α → ∞, the penalty term dominates and the selection reduces to SC, i.e.,
choosing the answer with the largest support nk. Empirically, we find α = 1.0 to be an appropriate
choice.

Shi & Jin (2025) leverages a generative verifier, Heimdall, requiring a total of N (1+M) = O(NM)
long CoT generations per problem, where M is the number of times each candidate solution is verified,
leading to prohibitively high inference costs as N or M is scaled. To address this, we replace the
costly generative verifier with a lightweight discriminative verifier. After sampling N candidate
responses, we score each with the verifier. The cost of discriminative verification is negligible relative
to the cost of sampling N responses. As we demonstrate in Section 4.3, this approach outperforms
generative verification across most realistic compute budgets.

Building on Heimdall’s bandit-style penalty, we use a Hoeffding-inspired lower-confidence
bound (Hoeffding, 1963; Auer et al., 2002), replacing their O((nkM)−1) decay with a gentler
O(n

−1/2
k ) term. This

√
· form penalizes low-support answers less and decays quickly as nk grows,

boosting overall accuracy. Concretely, we score each answer group by

Score(ak) = r̄(ak) − α

√
ln(N)

nk + 1
,

and select the answer with the highest score. We formalize our approach in Algorithm 1.

5



Algorithm 1 Discriminative Pessimistic Verification (DPV@N )

Require: problem Q, solver LM, slate size N , verifier V , penalty weight α
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Verifications← { ri = V (si)}Ni=1 ▷ Stage 2: Verify Candidates
3: Partition {1, . . . , N} into clusters {Ck} by final answer ak ▷ Stage 3: Group Answers
4: for each cluster Ck do
5: nk ← |Ck|
6: r̄(ak)← (1/nk)

∑
i∈Ck

ri

7: ψk ← Ψ(N,nk) ▷ e.g., Ψ =
√

ln (N) /(nk + 1)

8: k∗ ← argmaxk [ r̄(ak)− αψk ] ▷ Stage 4: Select Best Answer
9: return ak∗

4 Experiments

We test the performance of DPV on several challenging benchmarks: AIME2024, AIME2025,
LiveBench Math (White et al., 2025), and GPQA (Rein et al., 2023). For each AIME problem, we
sample 128 candidate responses no longer than 16k tokens from DeepSeek-R1-Distill-Qwen-32B. On
LiveBench Math and GPQA, we sample only 64 candidate responses. We verify each response once
with a discriminative verifier. During verification, we include the thinking content (i.e., the tokens
between the <think> and </think> tags) during both training and inference; early experimentation
motivated this decision. To ensure our metric estimates (e.g., Pass@N or DPV@N) are precise, we
report the mean over 1000 resampled draws of size N per problem and give 95% confidence intervals
computed with the binomial normal-approximation, treating every resampled draw as an independent
Bernoulli trial. Our results are provided in Table 1.

Method AIME2024 AIME2025 LiveBench Math GPQA

Pass@1 67.0± 0.5 52.0± 0.6 62.1± 0.2 56.9± 0.2
SC@32 83.4± 0.4 66.6± 0.5 67.0± 0.2 63.5± 0.2
DV@32 79.3± 0.5 62.7± 0.5 67.4± 0.2 65.1± 0.2
DPV@32 86.5± 0.4 70.2± 0.5 68.0± 0.2 66.2± 0.2

Table 1: Accuracy rates of DeepSeek-R1-Distill-Qwen-32B with discriminative pessimistic verifi-
cation (N = 32), compared to other inference methods. DPV and DV share the same underlying
verifier, but for DPV we aggregate by final answer and subtract the pessimism penalty.

Across the board in Table 1, DPV outperforms competing selection methods under near-equivalent
compute budgets. For example, on AIME2025, DPV@32 improves over Pass@1 by 18.2%, and beats
SC@32 and DV@32 by 3.6% and 7.5%, respectively. Amazingly, even on an out-of-distribution task
like GPQA, which includes questions on biology, physics, and chemistry, DPV@32 can outperform
SC@32 by 2.7%.

In the following sections, we analyze the scaling properties of DPV. In Section 4.1, we study the
impact of scaling the sizes of the solver and verifier models, while in Section 4.2, the focus is inference-
time scaling properties (i.e., the number of candidate responses N and the solver’s reasoning budget).
Finally, in Section 4.3, we investigate the compute cost of DPV relative to comparison methods.

4.1 Scaling model sizes for DPV

To study the role of scaling the size of the solver model, we generate 128 candidate solutions per
question in AIME2024 and AIME2025 using DeepSeek-R1-Distill-Qwen models with 1.5B, 7B,
14B, and 32B parameters. To isolate the effect of scaling the discriminative verifier, we train a second
verifier initialized from DeepSeek-R1-Distill-Qwen-1.5B, and verify each candidate solution with
both the 1.5B and 7B verifiers. We plot the results on AIME in Figure 4 for several values of N .

We observe that increasing the solver’s size produces consistent but diminishing performance increases
on AIME. Specifically, DPV and SC scale near-identically as the size of the solver is increased, with
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Figure 4: Accuracy rates of DPV on AIME across various solver sizes and verifier sizes for several
values of N . Pass@N and SC@N are included for comparison.

DPV maintaining a consistent edge over SC regardless of the solver or verifier’s size, across various
Ns. Moreover, we find that the performance difference between DPV with the 1.5B and 7B verifiers
depends on N : when N is small, both verifiers perform similarly, but as N increases, the 7B verifier
begins to outperform the 1.5B verifier. We believe this is because the larger verifier is more resistant
to the long tail of persuasive but incorrect solutions that grows with N . Interestingly, we find that the
1.5B verifier consistently outperforms the 7B verifier when DeepSeek-R1-Distill-Qwen-1.5B is used
as the solver model, likely because its responses are more in-distribution for the verifier.

4.2 Inference-time scaling of DPV
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Figure 5: Left: Increasing the number of candidate results (N) sampled from DeepSeek-R1-Distill-
Qwen-32B produces consistent but diminishing improvements on AIME 2024/2025. Right: The
performance of DeepSeek-R1-Distill-Qwen-32B on AIME2024 scales logarithmically with the
reasoning budget regardless of selection method. Here, N = 32.

We study whether DPV benefits from increased inference-time compute along two axes: the number
of candidate solutions sampled from the solver and the reasoning budget allocated to the solver. First,
we observe that scaling N produces consistent but diminishing improvements in performance on
AIME (i.e., Pass@N increases). DV alone struggles to benefit from scaling N , with performance
quickly saturating. On the other hand, DPV shows consistent improvements as more solutions are
sampled, maintaining a 2.6% to 5.9% edge over SC as N is scaled from 2 to 128.

To control the reasoning budget, we use budget forcing (Muennighoff et al., 2025) and truncate the
candidate solutions T ∈ {0, 512, 1024, 2048, 4096, 8192, 16384} tokens after the opening think tag,
manually append the closing think tag, then allow the model to continue generating. In doing so, we
collect solutions under constrained reasoning budgets. We observe that even as the reasoning budget
is scaled from 0 to 16k tokens, DPV maintains an edge over SC, even while DV falls off, showcasing
the reliability of our method under various constraints.

7



4.3 The compute cost of DPV

We measure latency as a proxy for compute cost. Though prior work has simply focused on
FLOPs (Singhi et al., 2025), natural language generation is often memory- and I/O-bound, which
is not reflected in the FLOP count. Moreover, providers price GPUs by usage time, not FLOPs, so
latency is the most direct proxy for real compute cost. Specifically, we calculate the average time
taken to generate and verify candidate solutions on a single NVIDIA H100 NVL GPU based on the
average input and output lengths of AIME2025. We leverage vLLM (Kwon et al., 2023) and its many
optimizations, including dynamic batching, to reflect real-world usage.

N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

Repeated Sampling 333.7 373.3 396.7 640.8 1103.0 2209.8 4218.6

DPV (or DV) 1.0 2.0 4.1 8.1 16.2 32.5 64.9
GPV (M=2) 402.2 578.7 1059.7 1990.9 3797.5 7715.4 15260.0

Table 2: The average wall-clock time for repeatedly sampling N candidate solutions, as well as
the average time to verify each candidate solution using DPV (or DV) and GPV. For GPV, two
verifications are sampled per candidate solution.

Table 2 showcases the average time to sample and verifyN candidate solutions using various methods.
Specifically, we consider SC, DPV and its non-pessimistic counterpart DV, as well as a pessimistic
method for generative verification (GPV) proposed by Shi & Jin (2025). SC uses no additional
compute beyond repeated sampling, while discriminative verification techniques use just slightly
more, and generative verification uses significantly more. For example, sampling N = 8 candidate
responses to a question from AIME2025 takes 396.7s, on average. Meanwhile, verifying those 8
solutions with DV or DPV takes just 4.1s, but verifying the same 8 solutions with GPV takes 1059.7s,
a 258-fold increase.

Figure 1 displays the performance of these methods on AIME2025 under equalized compute budgets.
We observe that DPV consistently outperforms SC by between 3.4% and 5.2% for a negligible amount
(<1.5%) of additional compute. DV uses the same amount of compute as DPV, but its performance
quickly saturates as more candidate solutions are sampled. Importantly, under practical compute
limitations (e.g., <20 minutes per problem), DPV actually outperforms GPV by as much as 10%. This
is because DPV allocates nearly all of the budget towards sampling candidate solutions, while GPV
splits its compute budget between sampling and verifying candidates. Under modest compute budgets,
scaling the number of candidate solutions produces greater returns than scaling verifications; even an
oracle-level verifier will fail to produce the correct answer if no correct solutions were sampled. With
a large enough budget, however, the gain from sampling additional candidates begins to saturate, and
GPV begins to dominate DPV.

5 Related Work

LLM Verifiers LLM-based verifiers can be broadly categorized into generative and discriminative
approaches. Generative verifiers use large language models as judges that assess the correctness
or quality of outputs by generating natural language rationales. A growing body of work explores
this direction, employing LLMs as judges for modeling human preferences (Dubois et al., 2024;
Zheng et al., 2024; Li et al., 2024; Wang et al., 2023c; Kim et al., 2023, 2024; Li et al., 2023; Zhu
et al., 2023b; Mahan et al., 2024), or as verifiers for evaluating solution correctness in reasoning
tasks (Zhang et al., 2024c; Singhi et al., 2025; Shi & Jin, 2025; Saha et al., 2025).

In contrast, discriminative verifiers—such as reward models—assign scalar scores to candidate
responses based on human preference data (Christiano et al., 2017; Ziegler et al., 2019; Zhu et al.,
2023a; Liu & Zeng, 2024; Wang et al., 2024; Park et al., 2024; Han et al., 2024). These models are
central to reinforcement learning from human feedback and are also used to rank or select responses
in BoN inference settings (Lightman et al., 2023; Wang et al., 2023a; Luo et al., 2024; Saunders et al.,
2022; Uesato et al., 2022; Yu et al., 2024). Together, generative and discriminative verifiers provide
complementary paradigms for evaluating, selecting, and aligning LLM outputs at inference time.
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LLM Reasoning A substantial body of work has investigated improving the mathematical reasoning
capabilities of LLMs through training Cobbe et al. (2021); Guan et al. (2025); Hosseini et al. (2024);
Lightman et al. (2023); Pang et al. (2024); Ye et al. (2025); Luo et al. (2025b,a), test-time scaling Snell
et al. (2024); Brown et al. (2024); Setlur et al. (2024), or a combination of both Zhang et al. (2024b);
Guan et al. (2025); Xie et al. (2024); Zhang et al. (2024a). Following the release of o1 OpenAI
(2024), there has been a surge of interest in test-time scaling methods for LLM reasoning Snell et al.
(2024); Brown et al. (2024); Singhi et al. (2025); Zhao et al. (2025), which improve performance by
sampling multiple solutions and aggregating them via majority voting or LLM-based verification.
Our work builds on this line of research, demonstrating that discriminative LLM verifiers can serve as
an effective and efficient verification approach for test-time scaling in complex math reasoning tasks.

6 Conclusion

In this work, we demonstrated that a weak discriminative verifier paired with a pessimistic penalty
term to discount answers with low support can enable strong test-time scaling. For example, on
AIME2025 our method beats self-consistency by between 3.4% and 5.2% for a negligible amount
(<1.5%) of additional compute, and even outperforms generative verification techniques by up to 10%
under practical compute limits. These results show that carefully-designed discriminative verification
offers an immediately deployable, compute-efficient path to stronger LLM reasoning.

Limitations and Broader Impacts

Limitations Our method improves answer selection only when at least one correct candidate is
present, so its ceiling is still bounded by the solver’s Pass@N. Additionally, like SC, our method
assumes that responses can be clustered into equivalence classes and thus would likely not be suitable
for domains lacking a reliable mechanism for determining answer equivalence (e.g., open-ended
natural-language tasks). Also, under extreme compute budgets, generative verification techniques
outperform our proposed approach. Lastly, our compute analysis between discriminative and genera-
tive verification is grounded in current software and hardware; with rapidly advancing progress on
both fronts, generative verification is sure to grow more efficient.

Broader Impacts Our proposed method enables highly efficient yet effective test-time scaling.
This may lower the hardware barrier for academic labs or other groups that need strong reasoning, but
cannot afford massive inference clusters. On the flip side, better low-cost reasoning may accelerate
misuse scenarios, which can be mitigated by techniques such as rate-limiting, watermarking, or
alignment training.
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A Additional Technical Details

Our training data is based on a subset of Numina-Math (LI et al., 2024), which was released under an
Apache license 2.0. DeepSeek-R1 responses were collected from Mattern et al. (2025) (also Apache
2.0). Meanwhile, the majority of the responses from six DeepSeek-R1-Distill models, DeepScaleR-
1.5B-Preview, and the two QwQ models were generated on a local cluster of NVIDIA A100 GPUs,
with a minority coming from 3rd party API providers.

Our evaluation datasets are AIME2024 (MIT), AIME2025 (MIT), LiveBench-Math (White et al.,
2024) (Apache 2.0), and GPQA (Rein et al., 2023) (CC-by-4.0). Combined, they include 596
questions. We decontaminate the training dataset by excluding any problem whose fuzzy-match
similarity to an entry in our evaluation sets exceeds 80. For each AIME problem, we sample 128
candidate solutions, while on LiveBench Math and GPQA, we sample only 64 candidate solutions.

When rolling out solutions during training and evaluation, we follow the model’s usage recommen-
dations, namely prefilling the opening think token, sampling with a temperature of 0.6 and a top-p
value of 0.95, and instructing the model to output its final answer within \boxed{}.

Our 1.5B and 7B discriminative verifiers were trained on 4xA100s and 4xH200s, respectively. For
both, we use the hyperparameters listed in Table 3.

Hyper-parameter Value

Global batch size 16
Gradient accumulation steps 4
LR 5×10−5

LR scheduler Linear with 20 warmup steps
Optimizer (AdamW) β1 = 0.9, β2 = 0.999
λ 0.01
Max gradient norm 1.0

Table 3: Hyper-parameters for training discriminative verifiers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in an separate “Limitations and Broader Impacts”
section directly after the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work is empirical; it introduces a verification algorithm but no formal
theorems or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3.1 and Appendix A detail the data curation, training methodology,
hyperparameters used. Section 3.2 and Section 4 specify the evaluation settings necessary to
replicate our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at https://anonymous.4open.science/r/DPV-NeurI
PS2025. Data will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3.1 and Appendix A detail the data curation, training methodology,
hyperparameters used. Section 3.2 and Section 4 specify the evaluation settings necessary to
replicate our work. Full details are provided code, which is anonymized and available at
https://anonymous.4open.science/r/DPV-NeurIPS2025.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results in Table 1 include 95% confidence intervals, and Section 4
details the methodology used to derive these confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Some analysis of the compute resources used are provided in Section 4.3, and
additionally in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors made every effort to conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Limitations are discussed in an separate “Limitations and Broader Impacts”
section directly after the conclusion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work releases only a small discriminative verifier; risk of direct misuse is
minimal.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the assets used in the work are properly cited and their
respective licenses were respected and mentioned in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets are released and documented (anonymously) at https://anonym
ous.4open.science/r/DPV-NeurIPS2025.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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